

CURAN: BEAMS (HERMITIAN)	TEST 027	rev.1 21/10/13	version 10.70
VALIDATION, CROSS CHECKS, RELIABILITY, BENCHMARK	Tested by: Ma	rco Croci - Checke	d by: Paolo Rugarli

MODEL		
MODELS NAME (see notes)	OUTPUT FILES (see notes)	ANALYSIS TYPE
curanBE 027 elem xxxx.WSR	curanBE 027 elem xxxx.cog	nonlinear static (Curan)

DATA					
L [mm]	L/H	P [N]	E [N/mm ²]	σ_{y} [N/mm ²]	W _{pl} [mm ³]
3000	2	78333	210000	235	125000

THEORETICAL COMPUTATION

Material is elastic-perfectly plastic. For L/H=2, frame failure occurs when (see note below):

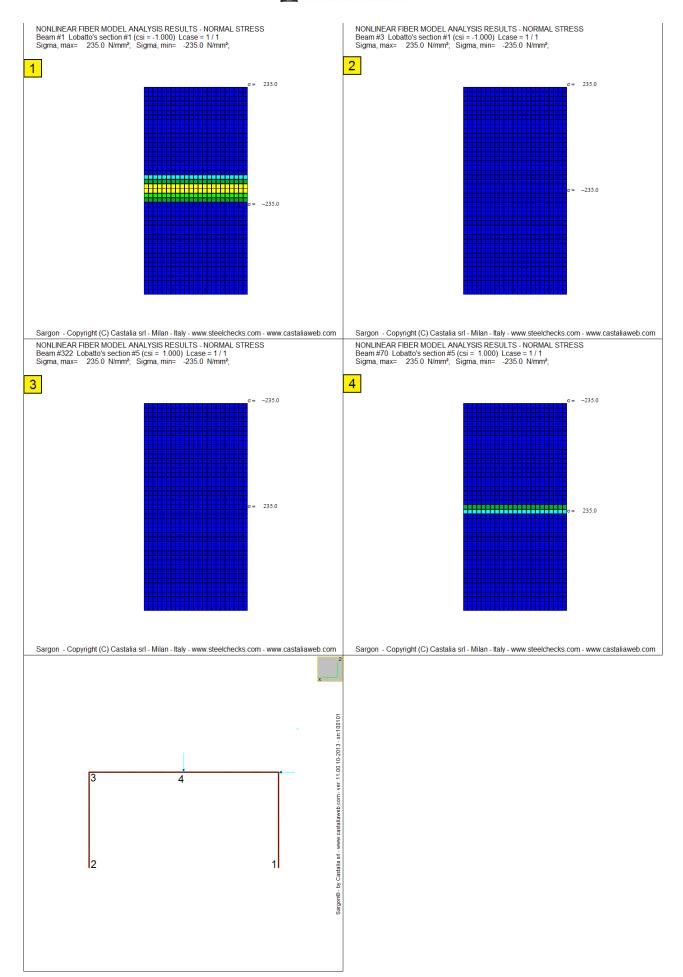
$$P_{lim} = 6M_{pl} / L$$

where M_{pl} = W_{pl} * σ_y = 125000mm³ * 235N/mm² = 2.938E+07Nmm It is

$$P_{lim} = 6 * 2.938E + 07Nmm / 3000mm = 58750N < P$$

Since applied load P is greater than limit load P_{lim} , frame failure occurs. Load multiplier is:

$$P_{lim} / P = 58750N / 78333N = 0.75$$


CROSS-CHECK

Value	Model	Number of beam elements	Theory	<u>S</u> argon	% difference (S-T)/T*100
Load multiplier	curanBE 027 elem 0006	6	0.75	1	33.3
Load multiplier	curanBE_027_elem_0012	12	0.75	0.8827	17.7
Load multiplier	curanBE 027 elem 0024	24	0.75	0.8114	8.2
Load multiplier	curanBE_027_elem_0048	48	0.75	0.7784	3.8
Load multiplier	curanBE 027 elem 0096	96	0.75	0.7631	1.7
Load multiplier	curanBE_027_elem_0192	192	0.75	0.7561	0.8
Load multiplier	curanBE_027_elem_0384	384	0.75	0.7511	0.1

NOTES

- 7 different models were created, with different meshes; precision of load multiplier computation depends on mesh refinement. Each model name ends with the number of elements (for example, curanBE_027_elem_0006.WSR has 6 elements; related output file is curanBE_27_elem_0006.cog).
- Theoretical multiplier is computed according to Calcul Plastique des Constructions, Ch. Massonnet, M. Save Italian translation by AA.VV. from Istituto di Scienza e Tecnica delle Costruzioni del Politecnico di Milano, Clup Milano, 1982.
- Applied force is computed in order to get a theoretical load multiplier exactly equal to 0.5.
- Analysis parameters: Lobatto's points: 5. Fibers number: 1000.
- Shear area: not considered.
- Fibers stress in relevant sections of the last model are shown in the following page.

