

CURAN: BEAMS (HERMITIAN)	TEST 026	rev.1 21/10/13	version 10.70
VALIDATION, CROSS CHECKS, RELIABILITY, BENCHMARK	Tested by: Ma	rco Croci - Checke	d by: Paolo Rugarli

MODEL		
MODELS NAME (see notes)	OUTPUT FILES (see notes)	ANALYSIS TYPE
curanBE_026_elem_xxxx.WSR	curanBE_026_elem_xxxx.cog	nonlinear static (Curan)

DATA					
L [mm]	L/H	P [N]	E [N/mm ²]	σ _y [N/mm ²]	W _{pl} [mm ³]
3000	1	78333	210000	235	125000

THEORETICAL COMPUTATION

Material is elastic-perfectly plastic. For $\rm L/H=1$, frame failure occurs when (see note below):

 $P_{lim} = 4M_{pl} / L$

where M_{pl} = W_{pl} * σ_{y} = 125000mm 3 * 235N/mm 2 = 2.938E+07Nmm It is

P_{lim} = 4 * 2.938E+07Nmm / 3000mm = 39167N < P

Since applied load P is greater than limit load ${\tt P_{lim}}$, frame failure occurs. Load multiplier is:

 $P_{lim} / P = 39167N / 78333N = 0.5$

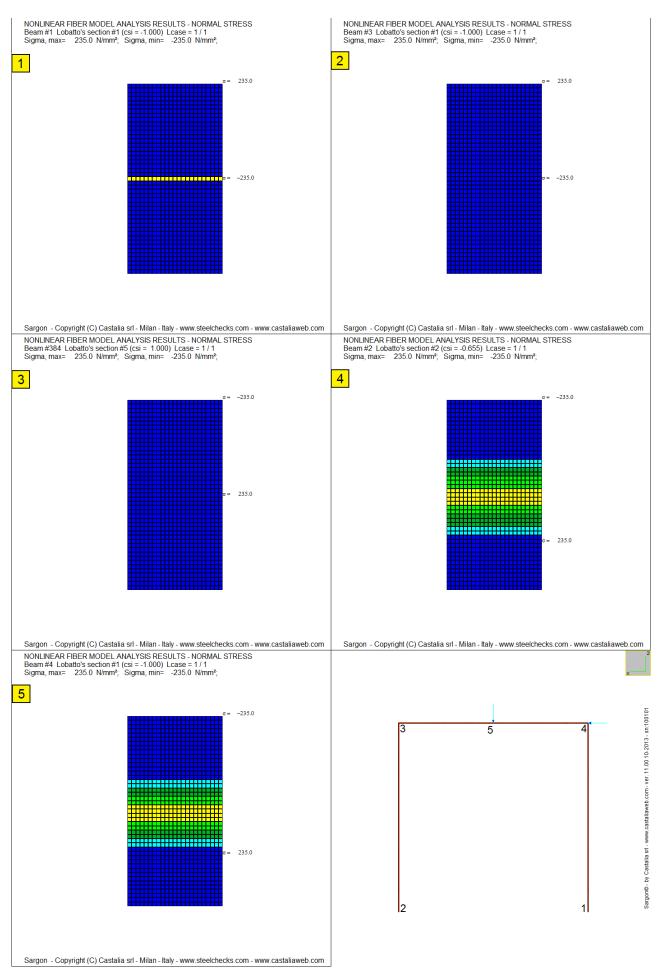
CROSS-CHECK

Value	Model	Number of beam elements	<u>T</u> heory	<u>S</u> argon	<pre>% difference (S-T)/T*100</pre>
Load multiplier	curanBE 026 elem 0006	6	0.5	0.6304	26.1
Load multiplier	curanBE_026_elem_0012	12	0.5	0.5617	12.3
Load multiplier	curanBE_026_elem_0024	24	0.5	0.5276	5.5
Load multiplier	curanBE 026 elem 0048	48	0.5	0.5077	1.5
Load multiplier	curanBE 026 elem 0096	96	0.5	0.5067	1.3
Load multiplier	curanBE_026_elem_0192	192	0.5	0.4993	-0.1
Load multiplier	curanBE 026 elem 0384	384	0.5	0.4909	-1.8

NOTES

• 7 different models were created, with different meshes; precision of load multiplier computation depends on mesh refinement. Each model name ends with the number of elements (for example, *curanBE_026_elem_0006.WSR* has 6 elements; related output file is *curanBE_26_elem_0006.cog*).

• Theoretical multiplier is computed according to *Calcul Plastique des Constructions*, Ch. Massonnet, M. Save - Italian translation by AA.VV. from Istituto di Scienza e Tecnica delle Costruzioni del Politecnico di Milano, Clup Milano, 1982.


• Applied force is computed in order to get a theoretical load multiplier exactly equal to 0.5.

• Analysis parameters: Lobatto's points: 5. Fibers number: 1000.

• Shear area: not considered.

• Fibers stress in relevant sections of the last model are shown in the following page.

