

CURAN: BEAMS (HERMITIAN)	TEST 025	rev.1 21/10/13	version 10.70
VALIDATION, CROSS CHECKS, RELIABILITY, BENCHMARK	Tested by: Ma	rco Croci - Checke	d by: Paolo Rugarli

MODEL		
MODEL NAME	OUTPUT FILE	ANALYSIS TYPE
curanBE_025.WSR	curanBE_025.CS1.EEN	nonlinear static (Curan)

DATA						
L [mm]	P [N]	a [mm]	b [mm]	E [N/mm ²]	I [mm ⁴]	K [Nmm/rad]
1000	1000	500	500	210000	6.667E+03	4.200E+06

THEORETICAL COMPUTATION

Beam material is linear elastic (fibers are not modeled). End moments are:

$$M_{A} = \frac{rPL}{4-r} \frac{a}{L} \frac{b}{L} \left[3\left(1-\frac{a}{L}\right) \right] \qquad r = \frac{1}{1+\frac{3EI}{KL}} = 0.5 \qquad M_{B} = \frac{PL}{4-r} \frac{a}{L} \frac{b}{L} \left[2\left(1+\frac{a}{L}\right) - 0.5\left(2-\frac{a}{L}\right) \right]$$

CROSS-CHECK

End Moment	<u>T</u> heory [Nmm]	<u>S</u> argon [Nmm]	<pre>% difference (S-T)/T*100</pre>
$M_A=M_{limit}$	5.357E+04	5.357E+04	0.0
$M_B = M_B, total$	1.607E+05	1.607E+05	0.0

NOTES

[•] L force is parallel to web (strong axis bending).

 $[\]bullet$ Formulae for M_{A} and M_{B} computation given in Practical Analysis of Semi-Rigid Frame Design, Editor: W F Chen, World Scientific Publishing.

[•] r_i=0: hinge; r_i=1: fixed.

[•] shear area: not considered. Beam elements number: 2