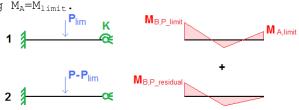


CURAN: BEAMS (HERMITIAN)	TEST 021	rev.1 21/10/13	version 10.70
VALIDATION, CROSS CHECKS, RELIABILITY, BENCHMARK	Tested by: Ma	rco Croci - Checke	d by: Paolo Rugarli

MODEL		
MODEL NAME	OUTPUT FILE	ANALYSIS TYPE
curanBE_021.WSR	curanBE_021.CS1.EEN	nonlinear static (Curan)


DATA							
L [mm]	P [N]	a [mm]	b [mm]	E [N/mm ²]	I [mm ⁴]	K [Nmm/rad]	M _{limit} [Nmm]
1000	1000	500	500	210000	6.667E+03	4.200E+06	4.000E+04

THEORETICAL COMPUTATION

Beam material is linear elastic (fibers are not modeled).

It is possible to consider the sum of 2 schemes:

- 1) end \boldsymbol{A} semirigid end \boldsymbol{B} fixed until $\boldsymbol{M}_{\!A}$ reaches the limit value.
- 2) end ${\bf A}$ hinge end ${\bf B}$ fixed for the residual force $P_{\text{residual}}=P-P_{\text{limit}}$, where P_{limit} is the force giving $M_A=M_{\text{limit}}$.

To get moment values with P_{limit} , it is possible to compute the scheme (1) considering an indefinitely linear elastic spring and the full load P: the ratio between P_{limit} and P is equal to the ratio between M_{limit} and $M_{A,\text{linear}}$.

$$\begin{split} M_{\scriptscriptstyle A,linear} &= \frac{rPL}{4-r} \frac{a}{L} \frac{b}{L} \bigg[3 \bigg(1 - \frac{a}{L} \bigg) \bigg] \qquad r = \frac{1}{1 + \frac{3EI}{KL}} = 0.5 \qquad P_{\rm limit} = P \frac{M_{\scriptscriptstyle A,limit}}{M_{\scriptscriptstyle A,linear}} \\ M_{\scriptscriptstyle B,linear} &= \frac{PL}{4-r} \frac{a}{L} \frac{b}{L} \bigg[2 \bigg(1 + \frac{a}{L} \bigg) - 0.5 \bigg(2 - \frac{a}{L} \bigg) \bigg] \qquad M_{\scriptscriptstyle B,P_{\rm limit}} = M_{\scriptscriptstyle B,linear} \frac{P_{\rm limit}}{P} \end{split}$$

$$M_{B,residual} = \frac{3(P_{residual})L}{16}$$

$$M_{B,total} = M_{B,P_limit} + M_{B,residual}$$

CROSS-CHECK

End Moment	Theory [Nmm]	Sargon [Nmm]	% difference (S-T)/T*100
$M_A = M_{limit}$	4.000E+04	4.000E+04	0.0
$M_B=M_B,_{total}$	1.675E+05	1.675E+05	0.0

NOTES

- force is parallel to web (strong axis bending).
- ullet Formulae for M_A and M_B computation given in $Practical\ Analysis\ of\ Semi-Rigid\ Frame\ Design,$ Editor: W F Chen, World Scientific Publishing.
- r_i=0: hinge; r_i=1: fixed.
- shear area: not considered. Beam elements number: 2