

CURAN: BEAMS (HERMITIAN)	TEST 020	rev.1 21/10/13	version 10.70
VALIDATION, CROSS CHECKS, RELIABILITY, BENCHMARK	Tested by: Ma	rco Croci - Checke	d by: Paolo Rugarli


MODEL				
MODEL NAME	OUTPUT FILE	ANALYSIS TYPE		
curanBE_020.WSR	curanBE_020.CS1.EEN	nonlinear static (Curan)		

DATA						
L [mm]	P [N]	E ₁ [N/mm ²]	E ₂ [N/mm ²]	σ_y [N/mm ²]	I [mm ⁴]	W _{pl} [mm ³]
5000	500000	210000	208000	235	1.336E+07	207000

THEORETICAL COMPUTATION

Maximum bending moment is $M_{\text{max}}=PL/8=3.125E+08Nmm$.

Since σ_y is exceeded*, it is not simple to compute beam displacements. We know that the displacement computed considering bilinear constitutive law $(E_1 \! + \! E_2)$ must be greater than the displacement computed considering a linear law with $E \! = \! E_1$ but smaller than the displacement computed considering a linear law with $E \! = \! E_2$ (see image).

Midspan displacement are computed as follows; the displacement computed by Sargon $(\delta_{\text{E1+E2}})$ must be inside that range: $\delta_{\text{E1}} < \delta_{\text{E1+E2}} < \delta_{\text{E2}}$.

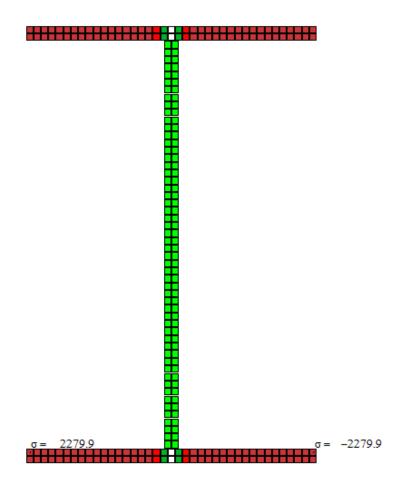
$$\delta_{Ei} = \frac{PL^3}{192E_i I} \rightarrow \delta_{E1} = 11.61 \text{ and } \delta_{E2} = 11.72$$

In order to have a very small range, the difference between E₁ and E₂ is equal to 1% only. For E1=E2, it would be $\delta_{\text{E1}}=\delta_{\text{E1+E2}}=\delta_{\text{E2}}$.

(*) $P(\sigma_v) = 8M_{vl}/L < P$, with $M_{vl} = W_{vl} * \sigma_v$ (see test 011 for comparison)

CROSS-CHECK

Value	<u>T</u> heory	<u>S</u> argon	% difference (S-T)/T*100
M _{max} [Nmm]	3.125E+08	3.125E+08	0.0


Displacement check				
$\delta_{E1} < \delta_{E1+E2} < \delta_{E2}$	\rightarrow	11.61 < 11.71 < 11.72	CHECKED	

NOTES

- force is parallel to flanges (weak axis bending).
- shear area: not considered.
- Analysis parameters: Lobatto's points: 5. Fibers number: 250
- Beam elements number: 2

NONLINEAR FIBER MODEL ANALYSIS RESULTS - NORMAL STRESS Beam #1 Lobatto's section #1 (csi = -1.000) Lcase = 1 / 1 Sigma, max= 2279.9 N/mm²; Sigma, min= -2279.9 N/mm²;

Sargon - Copyright (C) Castalia srl - Milan - Italy - www.steelchecks.com - www.castaliaweb.com