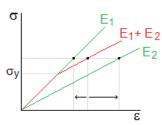


CURAN: BEAMS (HERMITIAN)	TEST 019	rev.1 21/10/13	version 10.70
VALIDATION, CROSS CHECKS, RELIABILITY, BENCHMARK	Tested by: Ma	rco Croci - Checke	d by: Paolo Rugarli


MODEL		
MODEL NAME	OUTPUT FILE	ANALYSIS TYPE
curanBE_019.WSR	curanBE_019.CS1.EEN	nonlinear static (Curan)

DATA						
L [mm]	P [N]	E_1 [N/mm ²]	E ₂ [N/mm ²]	σ_y [N/mm ²]	I [mm ⁴]	W _{pl} [mm ³]
5000	500000	210000	208000	235	1.024E+08	776000

THEORETICAL COMPUTATION

Maximum bending moment is $M_{\text{max}} = \text{PL} / 8 = 3.125 \text{E} + 08 \text{Nmm}.$

Since σ_y is exceeded*, it is not simple to compute beam displacements. We know that the displacement computed considering bilinear constitutive law (E₁+E₂) must be greater than the displacement computed considering a linear law with E=E₁ but smaller than the displacement computed considering a linear law with E=E₂ (see image).

Midspan displacement are computed as follows; the ϵ displacement computed by Sargon ($\delta_{\rm E1+E2}$) must be inside that range: $\delta_{\rm E1} < \delta_{\rm E1+E2} < \delta_{\rm E2}$.

$$\delta_{Ei} = \frac{PL^3}{192E_i I} \rightarrow \delta_{E1} = 15.13 \text{ and } \delta_{E2} = 15.28$$

In order to have a very small range, the difference between E_1 and E_2 is equal to 1% only. For E1=E2, it would be $\delta_{E1}=\delta_{E1+E2}=\delta_{E2}$.

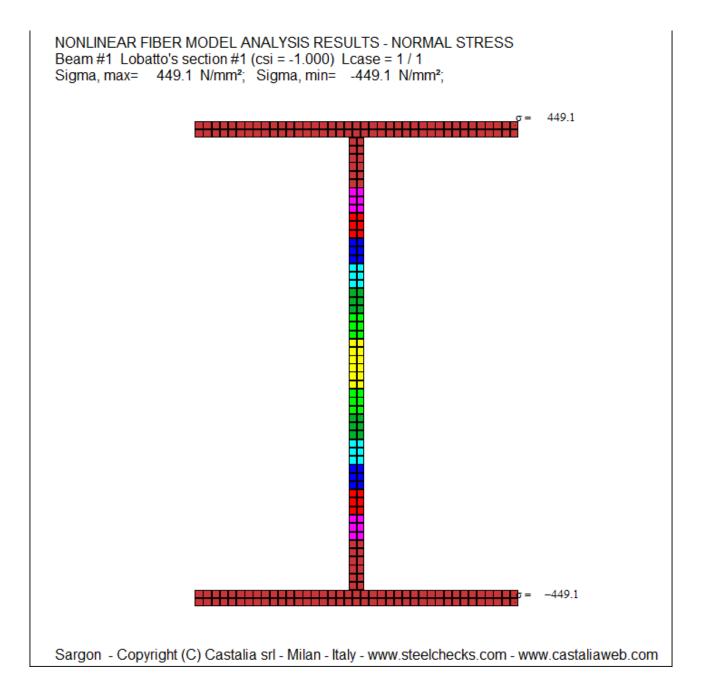
(*) P(σ_y)=8M_{p1}/L < P, with M_{p1}=W_{p1}* σ_y (see test 005 for comparison)

CROSS-CHECK

Value	<u>T</u> heory	<u>S</u> argon	<pre>% difference (S-T) /T*100</pre>
M _{max} [Nmm]	3.125E+08	3.125E+08	0.0

Displacement check				
$\delta_{\scriptscriptstyle E1} < \delta_{\scriptscriptstyle E1+E2} < \delta_{\scriptscriptstyle E2}$	\rightarrow	15.13 < 15.17 < 15.28	CHECKED	

NOTES


[•] force is parallel to web (strong axis bending).

[•] shear area: not considered.

[•] Analysis parameters: Lobatto's points: 5. Fibers number: 250

[•] Beam elements number: 2

