

CURAN: BEAMS (HER	RMITIAN) TEST 011	rev.1 21/10/13	version 10.70
VALIDATION, CROSS CHECKS, RELIA	ABILITY, BENCHMARK Tested by:	Marco Croci - Checke	ed by: Paolo Rugarli

MODEL		
MODEL NAME	OUTPUT FILE	ANALYSIS TYPE
curanBE 011.WSR	curanBE 011.cog	nonlinear static (Curan)

DATA				
L [mm]	P [N]	E [N/mm ²]	σ_y [N/mm ²]	W _{pl} [mm ³]
5000	500000	210000	235	207000

THEORETICAL COMPUTATION

Cross section maximum bending moment is equal to

$$M_{pl} = W_{pl} \cdot \sigma_{\rm y} = 4.865 E + 07 Nmm$$

and occurs when a force equal to ${\tt P_{lim}}$ is applied:

$$P_{\text{lim}} = \frac{8M_{pl}}{L} = 77832N < P$$

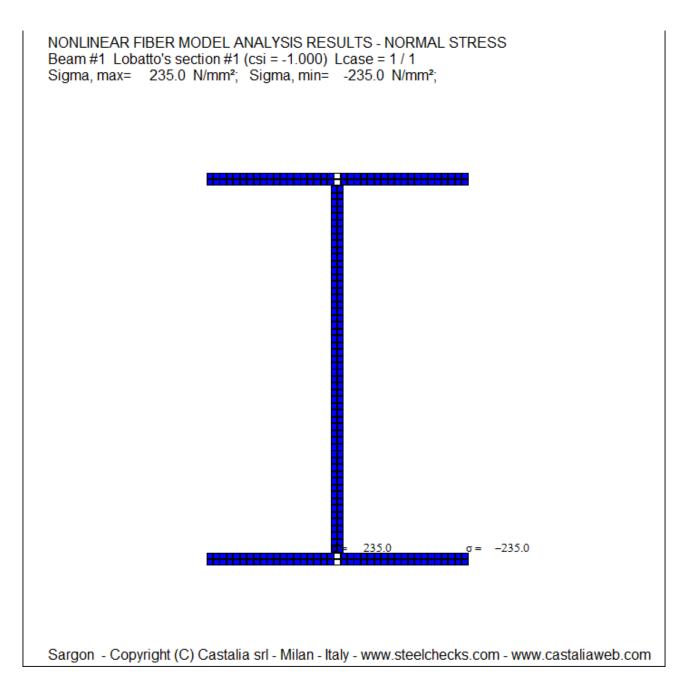
Since the applied load exceeds the limit load, a load multiplier is computed:

$$\frac{P_{\rm lim}}{P} = 0.1557$$

CROSS-CHECK

Value	Theory	<u>S</u> argon	<pre>% difference (S-T)/T*100</pre>
Load multiplier	0.1557	0.1552	-0.3

NOTES


[•] force is parallel to flange (weak axis bending).

[•] shear area: not considered.

[•] Analysis parameters: Lobatto's points: 5. Fibers number: 250

[•] Mesh is more refined at midspan and constraints, where 300mm of the member are divided into 10 elements (on both sides at midspan)

