

Validation of Sargon Nonlinear solver (CURAN, version 9.70)

TEST SP005 VALIDATION, RELIABILITY, BENCHMARK Marco Croci Rev.1-10/03/2011

Test description

A spring has been added under the free end of a cantilever. The spring has a gap so that it starts to react after a displacement equal to $10\,\mathrm{mm}$.

Test model: curanSP_005.WSR

Springs properties						
k ₁ [N/mm]	D _y [mm]	(k ₂) [N/mm]	(D _u) [mm]	Gap [mm]	Law	F
1950,078	100	0	∞	±10	symmetric	×

Beam properties						
Length	Shape		Material			
3000mm	IPE300	J=83561000mm4	S235	$E=210000N/mm^{2}$	v = 0, 3	

Loads and constraints					
Left end	Right end	Force			
Fixed	Spring	F = -50000N			

CHECK

Without the spring, the displacement of the simple cantilever would be equal to $FL^3/(3EJ)=-25$,64mm and maximum bending moment would be equal to $F^*L=1$,5 $^*10^8Nmm$. After a displacement equal to -10mm the spring starts to react: in this test k_1 is equal to $3EJ/L^3$, so the stiffness of cantilever+spring is 2 times greater than the stiffness of the simple cantilever and the additional displacement is equal to [-25,64mm-(-10mm)]/2=-7,82mm. Total displacement is -10mm-7,82mm=-17,82mm. Computed moment should be equal to $1,5^*10^8Nmm^*17,82mm/25,64mm=1,0425^*10^8$.

Load case	Value	Unit	CURAN	THEORETICAL	% diff.
1	Node 8 displacement (z)	mm	-1,782E+01	-1,782E+01	0,00
1	Beam #1 max bending moment	Nmm	1,042E+08	1,043E+08	-0,01

[%] difference = (CURAN - THEORETICAL) / THEORETICAL * 100

Precision of limit multiplier for the analysis: 0.005