


Test	des	orir	tion
rest	aes	CLTP	JUTOU

Support is made of no-tension springs. A horizontal force F is applied on the top-right node of a concrete block made of plateshell elements; self weight of each plate-shell element is applied as nodal loads on element nodes. When F is null, all the springs are in compression under self weight. Increasing F, compression in the springs on the right decreases until compression is equal to zero, then they stop to work. When a critical value of F is reached there is no more equilibrium. Test model: curanSP_002.WSR

Springs properties						
k ₁	Dy	(k ₂)	(D _u)	Law	Gap	Dy †F
375N/mm	500mm	250N/mm	∞	no tension	Omm	X
Note: extern	nal springs	have the fol	Llowing stif	fnesses: k ₁ /	2 and $k_2/2$	12

	Concrete prop	erties (plate-sh	ell elements)	
ρ	E	ν	Fy	Ft
2,5e-05N/mm ³	25491N/mm ²	0,2	20N/mm ²	20N/mm ²

Geometry and weight					
Sides	Mesh	Elements thickness	Weight		
L = 5000 mm	40x40 elements	150mm	W = 93750N		

Load cases					
Load case 1	Load case 2	Load path			
Weight + F ₁ =1/3W	$F_2 = 1/3W$	active			

CHECK

Since horizontal force is applied at the top of the block, the value of F which causes a lack of equilibrium is equal to W/2. In the first step the following forces are applied: total weight W (vertical) and $F_1=1/3W$ (horizontal). There is equilibrium. In the second step, $F_2=1/3W$ is applied to the previous condition. Total applied F is equal to 2/3W > W/2, so there is a lack of equilibrium: load case 2 can not be completely applied. Limit condition is reached when $F_2/2$ has been applied: $F_1+F_2/2=1/3W+1/6W=1/2W$: load multiplier for load case 2 should be equal to 0,5.

Load case	Value	Unit	CURAN	THEORETICAL	% diff.
2	Load multiplier	/	5,002E-01	5,000E-01	0,04

% difference = (CURAN - THEORETICAL) / THEORETICAL * 100

Precision of limit multiplier for the analysis: 0.005