



## Test description

Support is made of no-tension springs. A horizontal force F is applied on the top-right node of a concrete block made of plateshell elements; self weight of each plate-shell element is applied as nodal loads on element nodes. When F is null, all the springs are in compression under self weight. Increasing F, compression in the springs on the right decreases until compression is equal to zero, then they stop to work. When a critical value of F is reached there is no more equilibrium. In this test a force equal to W/6 is applied to the block, so springs reaction should coincide to the diagram in the figure on the right.

Test model: curanSP\_001.WSR



| Springs properties |                |             |                |                |                           |               |          |
|--------------------|----------------|-------------|----------------|----------------|---------------------------|---------------|----------|
|                    | k <sub>1</sub> | Dy          | k <sub>2</sub> | D <sub>u</sub> | Law                       | Gap           | Dy F     |
| l                  | 1500N/mm       | 500mm       | 1000N/mm       | $\infty$       | no tension                | Omm           | X        |
|                    | Note: exter    | nal springs | have the for   | llowing stif   | fnesses: k <sub>1</sub> / | 2 and $k_2/2$ | - k2 *** |

| Concrete properties (plate-shell elements) |                        |     |                    |                     |  |  |
|--------------------------------------------|------------------------|-----|--------------------|---------------------|--|--|
| ρ                                          | E                      | ν   | Fy                 | Ft                  |  |  |
| $2,5e-05N/mm^{3}$                          | 25491N/mm <sup>2</sup> | 0,2 | $20 \text{N/mm}^2$ | 20N/mm <sup>2</sup> |  |  |

| Geometry and loads |                |                    |            |         |  |  |
|--------------------|----------------|--------------------|------------|---------|--|--|
|                    |                |                    |            |         |  |  |
| Sides              | Mesh           | Elements thickness | Weight     | Force   |  |  |
| L = 5000 mm        | 10x10 elements | 150mm              | W = 93750N | F = W/6 |  |  |

CHECK

Internal force in each spring should be equal to:  $-2*W/L*(x_i/L)*Lx_i$  where  $x_i$  is the position of the spring 'i' and  $L_{x_i}$  is the length associated to that spring. As check, axial forces computed by Curan in some springs were compared with hand computations according to the previous formula. Springs numbering is reported. Note that  $L_x$  of external springs is half of  $L_x$  of internal ones.

## 19876549240

| Load<br>case | Value                  | Unit | CURAN      | THEORETICAL | % diff. |
|--------------|------------------------|------|------------|-------------|---------|
| 1            | Spring #5 axial force  | Ν    | -9,374E+03 | -9,375E+03  | -0,02   |
| 1            | Spring #9 axial force  | Ν    | -1,489E+04 | -1,500E+04  | -0,76   |
| 1            | Spring #11 axial force | Ν    | -9,290E+03 | -9,141E+03  | 1,64    |

% difference = (CURAN - THEORETICAL) / THEORETICAL \* 100

Precision of limit multiplier for the analysis: 0.005